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Abstract—Academic cloud infrastructures require users to
specify an estimate of their resource requirements. The resource
usage for applications often depends on the input file sizes,
parameters, optimization flags, and attributes, specified for each
run. Incorrect estimation can result in low resource utilization
of the entire infrastructure and long wait times for jobs in the
queue. We have designed a Resource Utilization based Migration
(RUMIG) system to address the resource estimation problem. We
present the overall architecture of the two-stage elastic cluster
design, the Apache Mesos-specific container migration system,
and analyze the performance for several scientific workloads on
three different cloud/cluster environments. In this paper we (b)
present a design and implementation for container migration in
a Mesos environment, (c) evaluate the effect of right-sizing and
cluster elasticity on overall performance, (d) analyze different
profiling intervals to determine the best fit, (e) determine the
overhead of our profiling mechanism. Compared to the default
use of Apache Mesos, in the best cases, RUMIG provides a gain
of 65% in runtime (local cluster), 51% in CPU utilization in
the Chameleon cloud, and 27% in memory utilization in the
Jetstream cloud.

I. INTRODUCTION

Computing resources consumed by applications can vary
across runs, as the resource consumption is often dependent on
configurations such as the input file sizes, optimization flags,
input parameter choices, and the core application kernel. The
current practice in academic/scientific cloud infrastructures
such as Jetstream [1] and Chameleon [2], is that users are
allocated a fixed number of Service Units (SU).

So, a user’s estimate of required resources (CPU, Memory,
GPU, I/O, Network bandwidth) and configuration of each
node (or virtual machine) for the experiments is critical for
requesting SUs and subsequent usage. In commercial clouds,
the acquisition cost is dependent on the configuration of the
virtual machines (VM) or bare metal nodes and the onus is
on the user to be accurate. Therefore, it is critically important
to have accurate resource request, and thereby, achieve high
resource utilization, in both academic and commercial settings.

Resource allocation for an application is typically based on
the estimate provided by the user. Therefore, incorrect estima-
tion of resources by users can significantly increase the overall

cost (or SUs) of running a set of applications [3]. For example,
a snapshot of single day usage at SUNY Binghamton’s Spiedie
cluster, used exclusively by academic researchers, revealed that
users tend to request a significantly higher amount of resources
than what their applications require.

Over-allocation of resources for applications causes in-
creased wait times for pending tasks in the queue, reduced
throughput, and under-utilization of the cluster [4]. Cloud
resource managers such as YARN [5], Omega [6], Mesos
schedulers such as Apache Aurora [7] and Marathon [8],
along with HPC resource managers such as Torque [9] and
Slurm [10] – all require estimation for each application before
it is launched. If the estimate is inaccurate, the cluster or
cloud’s overall utilization suffers.

Therefore, this paper explores new ways to augment the
cluster management technologies so that they can more accu-
rately estimate the resources requirements, in order to make
the resource utilization more efficient and effective.

We have designed a Resource Utilization based Migration
System (RUMIG) to address the resource estimation problem.
The key idea behind RUMIG is to profile applications for a
short period of time on a smaller-scale cluster to accurately
estimate the resource requirements before migrating the appli-
cation to the production cluster. RUMIG considers the user
estimate as the starting point in the process of estimating
the actual requirement. RUMIG uses an off-the-shelf Apache
Mesos installation to demonstrate how RUMIG modules can
be directly used by end users on academic clouds without the
need for modifications to their existing installations.

RUMIG primarily focuses on workloads that may run
on a single nodes on cloud computing platforms such as
containerized jobs. RUMIG is aptly suitable for applications
that do not have frequently varying phases and hence are a
good candidate for RUMIG’s initial profiling technique. For
example, HPC and high-throughput applications that do not
have varying phases can also benefit from RUMIG [11] [12]
[13]. Recent studies [14], [15] have shown that a large fraction
of jobs even on the cloud platform tend to run on single node
(due to increase in microservices) and often utilize even lesser



resources than what a single node is capable – motivating the
need for approaches such as RUMIG.

Specifically, in this paper, we make the following contribu-
tions:
• We present RUMIG - a two-stage elastic cluster design to

profile an application at runtime in a Little Cluster and
migrate it to an appropriate node in the Big Cluster.

• We evaluate and analyze the results on three different
platforms: a local cluster (Arcus), Chameleon Cloud and
Jetstream Cloud.

• We present analysis and discuss design trade-offs in enabling
the container migration in Apache Mesos and how to apply
this mechanism to improve resource utilization in a two-
stage cluster.
In section II, we discuss the technologies we have used

for the experiments. In section III, we present the design
of RUMIG and the experimental setup on our local cluster
(Arcus), Jetstream and Chameleon cloud platforms. In section
IV, we present analysis of results on the local cluster (Arcus).
In Section V, we present insights on applying RUMIG. In
section VI, we compare the three platforms. In section VII, we
discuss the potential of applying machine learning techniques.
In section VIII, we present the related work and in section IX,
we present future work. Finally, in section X, we present our
conclusions.

II. TECHNOLOGIES USED BY RUMIG

In this section, we list the technologies and infrastructure
used by our RUMIG design.

Mesos is a cluster-wide operting system that enables fine-
grained resource sharing among co-scheduled applications.

Apache Aurora [7] is a widely used framework that is
designed to submit and manage jobs to a Mesos cluster.

Docker is a well-known containerization platform. It uses
the operating system (OS) on the host machine, unlike a
Virtual Machine (VM) that has its own OS [16]. The container
is an isolated environment and Docker virtualizes the system
calls and routes them through the host OS, whereas a VM
provides an abstraction at the hardware level. As a result,
containers, such as Docker, are lightweight. The sharing of
compute resources such as CPU and memory are enforced via
cgroups.

Docker Swarm is a Docker native cluster manager that
combines multiple Docker engines. It uses a Manager-Agent
setup, where the manager assigns tasks to agents. We use the
standalone version of Docker Swarm as it provides a central-
ized way to monitor resource utilization for each container.

Performance Co-Pilot is a lightweight Open Source toolkit
for monitoring and managing system-level performance[17].

Checkpoint/Restore in Userspace (CRIU) is used for
freezing a running application and checkpointing it. It can be
further used to restore the application state. CRIU is currently
being supported by Docker, but only in experimental mode.
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Figure 1. Basic workflow of Mesos. The Mesos Framework
used in our experiments is Apache Aurora.

III. RUMIG: DESIGN AND EXPERIMENTAL SETUP

A. Apache Mesos and Apache Aurora

Apache Mesos is used for infrastructure management and
has a proven record of providing scalability for over thousands
of nodes [18]. To enable efficient job scheduling in an Apache
Mesos cluster, we chose the widely used Apache Aurora
framework.

Mesos and Aurora. Figure 1 presents a basic workflow
with Apache Mesos and Aurora. We use Apache Aurora as the
Mesos framework. Mesos pools all the resources, i.e., number
of CPU cores, amount of memory, disk space, and GPUs.
In step 1, Mesos collects these compute resources across all
Mesos agents/nodes as advertised by the agent (worker) nodes.
In step 2, Mesos presents the offers to Aurora for its scheduling
decisions. These offers contain a list of machines with their
available free compute resources. An example of an offer from
Mesos is the following:
[
<agent1-ID, cpu: 8, memory: 16GB,..>,
<agent2-ID, cpu: 6, memory: 6GB,..>,
...]

In step 3, Aurora picks an agent that is the best fit for the
application to be launched. Aurora by default follows a First-
Fit scheduling policy. In step 4, Mesos receives the acceptance
of an offer from Aurora and instructs the agent specified by
Aurora to launch the application. In this setup, a job can be
scheduled just on a single agent. As a result, the application
can execute just on a single machine. HPC jobs that require
multiple agents/nodes cannot currently be launched by this
setup.

Next, Figure 2 shows how an application’s resources are
estimated, migrated and launched. From a given allocation
of nodes/VMs, we logically separate the nodes into a Big
and Little cluster. To estimate the usage of resources for a
given application, we begin execution in the Little Cluster.
The applications launched in the Little Cluster get the user
requested resources. Resource usage for the application is
measured at one-second frequency until the standard deviation
for the last 5 seconds is less than 5% of the average for the
same duration. The resources measured are CPU and memory.
Based on the collected data, we then estimate the amount that
needs to be allocated for each resource using the following
formula:



buffer =

∣∣∣∣∣∣∣

√√√√ 1

N − 1

N∑
i=1

(xi − x)2

∣∣∣∣∣∣∣
Required Resource = Median Of Observations + buffer

Equation 1. In the formula, N denotes the total number of
observations, xi denotes the ith observation and x denotes
the arithmetic mean of the observations.

The buffer is a positive deviation from the observed resource
utilization and we consider the required resource to be the sum
of the median of all observation and the buffer. The buffer is
required to provide some headroom for the application. It is
critical for Aurora-Mesos as the application will be terminated
by Mesos if the application uses more than the allocated
resources.
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Figure 2. Architecture of RUMIG. The figure shows the steps
for profiling, checkpointing and resuming in the cluster. The
figure also shows how the elastic nodes are setup as part of
both the Swarm and Mesos clusters.

The Big Cluster is used for further execution of the ap-
plication with resource allocation based on the estimation in
the Little Cluster. In the first step, the application is added
to the job queue in the optimizer. The optimizer sends the
application to the Docker swarm manager. Next, the optimizer
starts monitoring the application and when the estimates for
the application are ready, the optimizer creates a checkpoint of
the application and creates a Docker image of the container file
system. Both of these are stored in the NFS, which is shared
across all the agents of the two clusters. Then, the optimizer
sends the application with the estimated resources, the location
of the checkpoint and the Docker image to the Mesos master.
The Mesos master allocates an agent to the application. Once
the application is received by the agent, the checkpoint data is
loaded by CRIU and the application is resumed on the agent.

RUMIG-base is a simplified version of RUMIG that does
not involve container migration and elastic nodes. Instead,
it restarts the container after profiling, which is similar to
Kubernetes VPA for cases that require only one restart. Hence,
RUMIG-base provides a fair comparison basis with Kuber-
netes VPA.
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Figure 3. Container Migration workflow. The figure shows the
steps involved in profiling and migrating an application.

B. Container Migration for Mesos

RUMIG consists of two clusters, one where the profiling
takes place and the other where the application executes to
completion. The containers are migrated from one cluster to
another to continue execution after profiling. This process re-
quires integration of container migration in RUMIG. Container
Migration is not supported by Mesos, and so we designed and
implemented it as a module in RUMIG.

Apache Mesos has no direct support for container migration
and does not have the full capability to execute Docker con-
tainers yet. It can just launch and monitor a Docker container.
Mesos decides where the job will be launched based on its
scheduling policies. This means that until the job is launched
there is no way to know where the checkpointing data, Docker
image, and temporary files generated by the container need to
be moved. So, efficient migration of containers is a challenge
in Mesos clusters.

The CRIU functionality, though available in Docker, cannot
be used in Docker’s standard mode and is available only in
Experimental mode.

In Figure 3, we explain the steps involved in container
migration. The optimizer asks the Swarm manager to launch
the task for the purpose of profiling (step 1). Swarm man-
ager launches the application on the Little cluster (step 2).
The application on the Little Cluster gets the user requested
amount of resources. The optimizer now starts monitoring the
application using Performance Co-Pilot (PCP) (step 3). Once
the resources are estimated, the optimizer creates a checkpoint
and a Docker image that contains the data generated by
the application. The checkpoint and the Docker image are
stored in NFS (step 4). Next, the optimizer asks the Mesos
master to launch the application with the estimated resources,
the checkpoint, and the Docker image with the application
generated data (step 5). It is to be noted that Mesos cannot
migrate containers, but it can launch Docker containers. We
migrate the application as a new Docker container that contains
the application generated data. The checkpoint is passed as a
volume to the container. When the application launches, the
Docker image, and the checkpoint is pulled from the NFS and
the application resumes execution (step 6).

Using the steps described in Figure 3, we have added the
ability to migrate the containers from the Little Cluster to
the Big Cluster. The current design also has an elastic cluster
setup - when the load on one of the clusters is high, we move



nodes from the other cluster. All the nodes in our setup are
agents of the Mesos cluster, while a fixed number of nodes are
agents of the swarm cluster. So, when a node is temporarily
part of both clusters and is switched to the swarm cluster, that
node is added to the maintenance mode on the Mesos cluster.
Maintenance nodes do not accept jobs from the Mesos master.

C. System Setup

We tested our approach on multiple environments: (1) Arcus
Cluster, which is our local cluster; (2) VMs on Jetstream cloud,
and (3) VMs on Chameleon cloud. Table I, provides details
of the hardware, Operating System and other software used
in the experimental setup on Arcus Cluster, Jetstream cluster
and Chameleon Cloud cluster.

Equipment/OS/Software Description/Version

Arcus Nodes (15) -
Bare metal nodes

Intel Xeon E5345, 8 core proces-
sor at 2.3GHz, 16 GB DDR2 RAM

Jetstream Nodes (9) -
Virtual Machines

Intel Xeon E5-2680 v3, 6 core pro-
cessor at 2.5GHz, 16 GB DDR3
RAM

Chameleon Nodes (11) -
Virtual Machines

Intel Xeon E312xx v3, 8 core pro-
cessor at 2.3GHz, 16 GB DDR3
RAM

Operating System Ubuntu 16.04

Docker 17.06.1-ce

Apache Mesos 1.5.1

Apache Aurora 0.17.0

Table I. Description of the infrastructure used in the experi-
ments on Arcus, Jetstream and Chameleon Cloud clusters.

D. Benchmarks/Workloads

To test the applicability of our solution we applied it
to several workloads as indicated below. We have included
applications with wide range of characteristics to demonstrate
the applicability of our approach to a wide range of cloud
applications.

1) SPECjvm2008: This is a Java Virtual Machine bench-
mark, that measures the performance of a Java Runtime En-
vironment (JRE) and contains several real-world applications
that focus on core Java functionality. The benchmark suite
includes scientific applications such as Monte-Carlo simu-
lations, that are used for various applications from biology
to quantum physics [19]. The applications of Fast Fourier
Transform, included in this suite, are well known in several
areas including spectral analysis and signal processing.

2) DGEMM: It is a simple, dense, multi-threaded matrix
multiply application and measures a sustained, floating-point
computational rate of a node.

3) Princeton Application Repository for Shared-Memory
Computers (PARSEC): It is a benchmark suite consisting
of diverse multi-threaded applications ranging from media
processing to financial application. We have used PARSEC
3.0 in our experiments [20], [21], [22].

Workload Description

1. Blackscholes Computational financial analysis application

2. Canneal Engineering application

3. Ferret Similarity search application

4. Fluidanimate Application consists of animation tasks

5. Freqmine Data mining application

6. Swaptions Financial Analysis application

7. Streamcluster Data mining application

8. DGEMM Dense-matrix multiply benchmark

9. SPECjvm2008 A suite containing floating point benchmarks
(Monte-Carlo, FFT, LU, SOR and Sparse)

Table II. Description of the benchmarks from PARSEC (1-7),
DGEMM and SPECjvm2008 used in the experiments.

E. Elasticity of Little and Big Cluster Sizes

We ran multiple experiments with different setup sizes for
the Big and Little cluster setup to determine the ideal ratio
between the size of the Little and Big Cluster. The ideal
ratio needs to be determined for each infrastructure setup
and workloads separately. For all the experiments, we also
discuss the results of container migration in the Big-Little
setup and compare them with the results of both the default
Mesos and RUMIG-base setups. In all the experiments that use
the default Mesos setup, we have labeled the graphs with the
format DM: number of nodes. The experiments with RUMIG-
base are labeled with the format (setup-ratio) RUMIG-base.
Note that the default Mesos and RUMIG setups present only
agent nodes. They always have one extra master node. The
RUMIG-base ratio includes the master node. The ratios are
mentioned in the format Little-Cluster-size:Big-Cluster-size.
Initially, RUMIG includes all elastic nodes in the Little cluster.
Algorithm 1 is used to make a decision about moving the
elastic nodes from the Little cluster to the Big cluster and
vice versa. We configured the setup to assign one elastic node
in the Little cluster for every 10 jobs in the queue (1:10 ratio).
So, if the job queue decreases to affect the 1:10 ratio, an elastic
node is moved from the Little cluster to the Big cluster. If the
job queue size increases, an elastic node is moved back to the
Little cluster. Each time an elastic node with the least number
of running jobs is selected to move. As a job may still be
running on that node, it is first added to the Mesos maintenance
mode list. Mesos does not schedule new tasks on maintenance
nodes. Once the running job on the node completes, the node
is registered with the Little or Big Cluster, as appropriate. The
Little cluster always has a minimum of one node.

The experiments use of a mix of 90 benchmarks, 10
instances of each of the benchmarks presented in Table II.
The benchmarks were randomly shuffled for each run, as the
arrival rate and order of applications may affect the results.
All the presented data are average of 10 runs.

F. Profiling Interval Analysis

To determine the interval to be used for profiling, we carried
out experiments at various intervals. These intervals are 3, 5,
and 7 seconds. Tables III and IV, show the results of profiling



Algorithm 1: RUMIG: Cluster Elasticity

1 OptimalSize = ceil(queue/10);
2 if LittleClusterSize �= OptimalSize then
3 if LittleClusterSize < OptimalSize then
4 TargetNode = select a node that is part of

ElasticNodes list & belongs to the BigCluster &
has the least number of running jobs;

5 MaintenanceMode.add(TargetNode);
6 wait();// wait for applications to

finish execution
7 Register node on LittleCluster;
8 else
9 TargetNode = select a node that is part of

ElasticNodes list & belongs to the LittleCluster
& has the least number of running jobs;

10 wait();// wait for applications to
finish execution

11 MaintenanceMode.remove(TargetNode);
12 Deregister node on LittleCluster;
13 end
14 end

with these intervals. At 3 second intervals, the results are not
satisfactory. We observe that there some instances where the
approximations are incorrect by almost a factor of two. For
example, in SPECjvm2008 we observe a memory approxima-
tion of 1805.21 MB whereas the actual requirement was 3350
MB. For the CPU approximations, the actual requirement is
5 cores whereas the profiler returned 2 cores. The memory
approximation for Canneal is also incorrect. However, at 5
and 7 second interval we see that the profiler is much more
accurate. Except for Freqmine, where the 5-second interval
takes 10 seconds to right-size. We determined that the 5-
second interval is a good trade-off when compared to the 7-
second interval – the 7-second interval’s accuracy is similar to
the 5-second interval, but on average it takes longer to right-
size an application.

IV. RESULTS ON ARCUS CLUSTER

1) RUMIG vs Kubernetes VPA: Kubernetes provides a
Vertical scaling system called Vertical Pod Autoscaler (VPA),
which aims to provide the required amount of resources to
a container running inside a Kubernetes pod. This is accom-
plished by monitoring, estimating and restarting the containers.
If the initial resource estimate given to Kubernetes is not
within the 90th percentile, the VPA keeps re-starting the ap-
plication with estimates based on the following formula: New
Resources = max(peak+MinBumpUp, peak*BumpUpRatio)
where, MinBumpUp = 100MB/m & BumpUpRatio = 1.2, till
the vertical scaling meets the resource requirement (’m’ is
the CPU unit used by Kubernetes, 1000m = 1 cpu core).
In the worst case, the estimation system in Kubernetes can
also exceed the maximum available resources on the nodes
causing the pod to go a pending state [23]. Our RUMIG-

Workload Profiling Interval Actual
3 seconds 5 seconds 7 seconds Reqmt

Blackscholes 574.87 (6) 683.83 (5) 670.10 (7) 649

Canneal 540.14 (3) 935.94 (5) 985.86 (7) 945.1

Ferret 106.01 (3) 105.49 (5) 105.53 (7) 105

Fluidanimate 503.09 (3) 511.02 (5) 511.09 (7) 511

Freqmine 352.03 (3) 596.65 (10) 583.19 (7) 601

Swaptions 6.18 (3) 6.44 (5) 6.52 (7) 6.5

Streamcluster 110.44 (3) 110.91 (5) 110.66 (7) 110

Dgemm 25.61 (3) 25.65 (5) 25.65 (7) 24.9

SPECjvm2008 1805.21 (6) 3287.66 (15) 3290.83 (14) 3350

Table III. Table shows the results of the memory profiling
methodology along with the actual memory requirements of
each application as determined by static profiling. The values
in parenthesis show the number of seconds taken for each
approximation. (Units: MB). While most approximations are
good at 3 seconds, the 5 and 7 second readings more closely
meet our accuracy requirements.

Workload Profiling Interval Actual
3 seconds 5 seconds 7 seconds Reqmt

Blackscholes 2 (6) 2 (5) 2 (5) 2

Canneal 1 (3) 1 (5) 1 (7) 1

Ferret 1 (3) 1 (5) 1 (7) 1

Fluidanimate 2 (3) 2 (5) 2 (7) 2

Freqmine 1 (3) 1 (10) 1 (7) 1

Swaptions 3 (3) 3 (5) 3 (7) 3

Streamcluster 3 (3) 3 (5) 3 (7) 3

Dgemm 6 (3) 7 (5) 7 (7) 7

SPECjvm2008 2 (6) 5 (15) 5 (14) 5

Table IV. Table shows the results of profiling to determine
the number of cores, along with the actual requirements of
each application as determined by static profiling. The values
in parenthesis show the number of seconds taken for each
approximation. (Units: CPU cores). While most approxima-
tions are good at 3 seconds, it sometimes fails to achieve the
accuracy we require, as seen in Blackscholes (longer time)
and SPECjvm2008 (incorrect approximation).

base is similar to VPA because it profiles and then re-starts
the application once. Figure 4 compares RUMIG-base with
Kubernetes VPA, running in default namespace. Kubernetes
VPA does multiple restarts to reach the appropriate resources
required to run the container. The ideal case is when the
user provides near optimal resources for the tasks so that
VPA requires just one restart. So, we provided optimal+30%
extra resources required, to run the container. RUMIG-base,
which does not use checkpoint/restore, performs similar to the
best case for Kubernetes VPA. RUMIG, however performs
significantly better for cases in which Kubernetes requires
multiple restarts. as it eliminates the need for restarts.

In the rest of the experiments we do not compare RUMIG
with VPA, as the two have different approaches - VPA makes
incremental resource allocation changes in each iteration,
along with a restart and so has a huge overhead compared to
the RUMIG. We instead study the overhead and performance
of RUMIG for various setups.

2) Equal Cluster Sizes: 7:7 setup: The Figure 5a shows
the runtime of all the setups. With the default Mesos setup,



1
1

1

1

1

1

1

1

1

0
0 0

0

0

0

0

0

0

5

4
5

1

5

6

1

1

4

1
1

1

1

1

1

1

1

1

Dgemm
Blackscholes

Canneal

Ferret

Fluidanimate

Freqmine

Swaptions

Streamcluster

SPECjvm2008

0

100

200

300

400

500

600

RUMIG-baseRUMIG-base RUMIGRUMIG

Kubernetes VPAKubernetes VPA Kubernetes VPA (optimal+30%)Kubernetes VPA (optimal+30%)

RUMIG vs Kubernetes VPA
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we get a runtime of 3319 seconds to execute the workloads.
The RUMIG-base approach has a runtime of 1282 seconds
(includes time spent for profiling) – an improvement of 61%.
This RUMIG-base experiment was conducted with a setup of 1
node in the Little Cluster for 14 nodes on the Big Cluster. We
subsequently ran RUMIG with a configuration that starts with
50% distribution of nodes each on the Big and Little cluster. At
7:7 setup, RUMIG takes an average of 1290 seconds, which
is within 1% of the RUMIG-base approach. The difference
can be attributed to the overhead of moving nodes from the
Big Cluster to the Little Cluster, which results in a queue on
the Big Cluster where the real execution takes place. We also
observe lower memory utilization by 5% (see Figure 5c) and
an improvement in CPU utilization by 6% when compared to
RUMIG-base (see Figure 5b).

3) 5:9 setup: In the next experiment, we reduced the size
of the Little Cluster so that the ratio with the Big Cluster
is 5:9. We observe an improvement in the runtime to 1187
seconds, a gain of about 8% over 7:7. We also see an increase
in memory utilization when compared to the 7:7 setup by about
5%. However, the memory utilization is similar to the RUMIG-
base approach. The CPU utilization shows an improvement
of 11% when compared to the RUMIG-base approach. This
improvement in runtime is due to the higher number of nodes
in the Big Cluster.

4) 3:11 setup: In order to determine the optimal ratio of
the cluster sizes, we further reduced the size of the Little
Cluster to a 3:11 setup. At this ratio, we see a significant
improvement in the throughput. The overall runtime dropped
from 1282 in RUMIG-base to 1134 seconds on average using
RUMIG with the 3:11 setup. Compared to the default Mesos
setup, there is a significant difference of 2185 seconds, which
is 65% improvement. We also see gains with CPU and memory
utilization. The memory utilization improves by about 5% and
CPU utilization by about 17% compared to RUMIG-base. The
CPU utilization is enhanced by about 84% compared to the
default Mesos setup. Due to the reduced runtime, and the
ability to pack more jobs on each node, makes the system
more efficient.

V. ADDITIONAL ANALYSIS OF RUMIG

1) Overhead of Right-sizing the resource requirements: In
Figure 7a, we compare the time taken to determine the correct
amount of resources for all setups. Each experiment has the
same number of workloads in the queue. We observe that
the 7:7 setup is the quickest to rightsize the entire workload,
which takes about 21 seconds. The 5:9 setup takes longer at
29 seconds and 3:11 setup is the slowest at 40 seconds. Even
though the 3:11 setup is slowest among the three, it is still ap-
proximately three times faster than the RUMIG-base approach.
We can conclude that 3:11 setup has the best overall results,
even though 7:7 has the best time to determine the resource
requirements. The 7:7 setup tends to make the applications
wait in the Big Cluster, which reduces the overall cluster
resource utilization. The 5:9 setup efficiently determines the
resource requirements, but only gives a marginal improvement
in CPU and memory utilization. The 3:11 setup provides
efficient time for right-sizing at 40 seconds while significantly
improving the CPU usage by 84% and memory utilization by
7% when compared with the default Mesos setup.

2) Cluster Elasticity Demonstration: In Figure 6a, we show
an example of the elasticity of our Big Cluster compared to
the behavior of the default Mesos setup. The results shown in
the figure only contain the first few seconds of the execution.
The first few seconds is ideal to show the elasticity as the
cluster size grows and is shown by the increasing cluster
CPU utilization, which corresponds to an increase the overall
number of nodes in use. The experiment is set up with 7 nodes
in the Little Cluster and 7 nodes in the Big cluster. We use the
DGEMM benchmark, a CPU intensive workload. We compare
against the default Mesos setup with the same workload. We
can observe from Figure 6a that the default Mesos is quick
to start executing the applications, while our Big-Little setup
slowly increases the Big Cluster in size and eventually has
a much higher average CPU utilization. In this example, 6
nodes move from the Little Cluster to the Big Cluster. Note
that if a node is scheduled to be moved to another cluster, no
applications are further scheduled on that node and the node
is moved when all the running applications have completed
executing on the node.

3) Effects of Migration: In Figure 6b, we present the
runtime of the applications for different execution methods.
These three methods have the following configuration: (1)
use of standalone Docker, where we get the runtime of the
application without the use of Aurora-Mesos; (2) the runtime
without migration, but with the use of Aurora-Mesos; and (3)
the runtime with migration and the use of Mesos, which is also
the RUMIG setup with no elastic nodes. In all the runs we see
that the standalone Docker performs the best as expected, as
it does not have the scheduling overhead that is incurred by
Aurora and Mesos. When we use the Aurora-Mesos setup, we
observe an average increase in runtime by about 4% and with
migration the increase in runtime is about 3%. We observe
that on average the RUMIG performs better by about 2% over
default Mesos. In some cases, the migration system is much



slower as seen in Ferret, Fluidanimate, Streamcluster, and
SPECjvm2008. The reason for the higher runtime on Ferret,
Fluidanimate and Streamcluster is that they generate a lot of
data by the time the checkpoint is created. This data is stored in
the image. To restart the application on the target node, there is
an overhead cost for migration of the data. The SPECjvm2008
benchmarks is another example where migration is expensive.
As the base image of SPECjvm2008 itself is very large, it
adds a significant overhead in the overall time to migrate. It
is to be noted that SPECjvm2008 is a suite of benchmarks in
the same image and hence the larger size.

4) Downtime: In Figure 6c, we show the average downtime
of applications. In the standalone mode, there is no downtime
as the applications start as soon as they are scheduled. In
the case of RUMIG-base or without migration, the downtime
is the time spent for profiling in the Little Cluster. As the
application is restarted on the Big Cluster after profiling.
In the case of RUMIG or with migration, the application
execution in the Little Cluster is not considered as downtime.
This is because the application will be migrated to the Big
Cluster and will continue execution. The figure shows that the
downtime for applications is much less with RUMIG than with
RUMIG-base. However, with applications that require a lot
of data transfer such as Ferret, Fluidanimate, Streamcluster,
and SPECjvm2008, the downtimes are expectedly higher in
RUMIG.

5) Comparing Allocation vs Usage: Figures 7b and 7c,
show the cluster-wide CPU and memory allocation and usage
for the default Mesos and RUMIG setup with elastic nodes.
The figures show the effectiveness of our profiling and con-
tainer migration modules.

VI. RUMIG - COMPARISON ACROSS ARCUS, JETSTREAM,
AND CHAMELEON

In Table V and VI, we show the cluster wide performance
results for different setups and compare them with the default
use of Mesos and RUMIG-base. We observe improvements in
the cluster utilization regardless of the type of infrastructure.

The Table VII presents the comparison of results obtained
in the three platforms. The Arcus cluster has bare metal
nodes, while Jetstream and Chameleon have Virtual Machines.
The infrastructure provided by both Jetstream and Chameleon
are on shared nodes, where multiple users may have vir-
tual machines on the same node. Also, the nodes are of
a different processor class – Jetstream nodes have 6 cores
each and Chameleon nodes have 8 cores each. The nodes
in all three setups have the same amount of memory. The
memory and processor technologies are not uniform across the
three platforms. Chameleon node configurations are similar to
Arcus. The best ratio in our experiments for Arcus is 3:11,
Jetstream is 2:6, and for chameleon it is 1:9. While there
are differences in the magnitude of the gains, RUMIG does
provide improvements on all three platforms compared to the
default Mesos setup.

Setup Runtime CPU Utiliza-
tion

Memory Uti-
lization

DM: 8 nodes 2374 38.14% 55.91%
1:8 RUMIG Base 901 58.30% 68.98%

4:4 RUMIG 926 56.84% 60.83%
3:5 RUMIG 847 69.67% 66.83%
2:6 RUMIG 779 75.10% 70.81%

Table V. Results on Jetstream Cluster.

Setup Runtime CPU Utiliza-
tion

Memory Uti-
lization

DM: 10 nodes 2498 28.1% 47.9%
1:10 RUMIG Base 2272 72.44% 54.21%

5:5 RUMIG 1899 73.88% 53.44%
3:7 RUMIG 1839 77.97% 55.60%
1:9 RUMIG 1631 78.89% 58.37%

Table VI. Results on Chameleon Cluster.

Arcus Jetstream Chameleon
Type Bare metal Virtual

Machine
Virtual
Machine

Configuration
- Each node

CPU - 8 cores,
Mem - 16 GB

CPU - 6 cores,
Mem - 16 GB

CPU - 8 core,
Mem - 16 GB

Best Ratio 3:11 2:6 1:9
CPU Utiliza-
tion

76.43% 75.10% 78.89%

Memory
Utilization

64.31% 70.81% 58.37%

Table VII. Comparison of results obtained with different plat-
forms. The table shows that RUMIG provides improvements
regardless of the platform and configuration.

VII. POTENTIAL OF CLASSIFICATION TECHNIQUES

We explored the potential for classification techniques to
improve the time taken to estimate the resource requirement
of an application. For example, if an application has been
previously recorded with resource estimation then the appli-
cation can be launched with the previously recorded data,
or with the predicted values even if the input configurations
and target infrastructure are changed. Additionally, we could
classify the users who submit the workloads into categories
depending on their past history of how accurate they were with
the initial estimates. To study the potential of this approach,
we conducted some experiments on Arcus cluster.

• We carried out a set of experiments where we assumed the
accuracy of the machine learning technique for classification
to be 33%, 66%, and 100%. Figure 8a shows the results
for run-time. We see that at 100% accuracy, the results are
expectedly promising and comparable to the 3:11 configu-
ration.

• At 66% accuracy, the runtime is 9% higher, the CPU
utilization is down by 7% and memory utilization is down
by 5% when compared to 3:11 configuration.

• At 100% accuracy, the runtime is 7% lower, the CPU
utilization is 2% higher and memory utilization is 3% higher
when compared to 3:11 configuration. Note that 100%
accuracy refers to cases when an application’s resource
requirements are known as they are submitted with the same
input parameters as their previous run(s).

These results show that a combination of RUMIG and machine
learning techniques could bring improvements in the time
required to optimize the resource requests.
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(a) Runtime comparison of all setups on Arcus
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(b) CPU utilization of all setups on Arcus cluster.
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(c) Memory utilization of all setups on Arcus cluster.
The 3:11 setup shows the best memory utilization

followed by 1:14 RUMIG-base.

Figure 5. Runtime, CPU usage and Memory usage comparison on Arcus Cluster.
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Figure 6. Elasticity, Migration Overhead and Average downtime comparison on Arcus Cluster.
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(b) CPU utilization comparison of Default Mesos,
RUMIG-base, all RUMIG setups and the setups

configured using potential Machine Learning based
classification on Arcus Cluster.
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(c) Memory utilization comparison of Default
Mesos, RUMIG-base, all RUMIG setups and the

setups configured using potential Machine Learning
based classification on Arcus Cluster.

Figure 8. Possible effects of using Classification techniques on Runtime, CPU usage and Memory usage in Arcus Cluster.
VIII. RELATED WORK

In our previous work, TSRO, we explored the possibility
of dynamically profiling applications [24]. In another previous
work, we listed the challenges in implementing a container mi-
gration system in Apache Mesos [25]. This paper significantly
extends our previous work. In TSRO, the application has to be
restarted on the Big Cluster once the profiling is completed.
The TSRO approach negatively affects the run-time and results
in wastage of resources, i.e. results from the partial execution
on the Little Cluster are discarded. RUMIG supports container
migration in Mesos to address this inefficiency. TSRO also
does not work for applications that provide a service as it has
to be terminated in the Little Cluster, which affects the quality
of service. Unlike RUMIG, TSRO does not support elasticity
and the size of the Little and Big Clusters is fixed.

Hoenisch et al. [26] developed a framework for vertical and
horizontal scaling of containers by restarting the applications.
Our work assumes that continuous execution is important, and
restarting is not acceptable.

Dhuraibi et al. [27] summarized the challenges involved in
container elasticity and include resource availability as a key
factor. RUMIG addresses several of the challenges listed by
Dhuraibi et al.

Baresi et al. [28] presented a vertical scaling capability for
web applications at a VM and container level. Hadley et al.
[29] have shown the capability of CRIU (Checkpoint Restore
In Userspace), a linux utility for live container migration,
across multiple clouds. They show this capability for both
stateful and stateless applications.

Tsafrir et al. [30] have shown that user estimates are gener-
ally incorrect and estimation approaches provide significant
improvements. Lee et al. [31] conducted a survey on the
inaccuracy of user estimates and showed that even users with
high confidence level were 35%-40% inaccurate. Our system
considers the users’ requests for resources in the Little Cluster,
but then uses the estimates generated by the profiling system
to execute them in the Big Cluster.

Rodrigues et al. [32] presented the problem of estima-
tion/prediction and investigated the effects of machine learning

algorithms for estimation in HPC systems. Further, Bharve et.
al [33][34] and Bhattacharjee et al.[35] have shown that per-
formance analysis and measurement is important in studying
resource management schemes in cloud schedulers. Similarly,
Palden Lama et al. [36] developed a resource provisioning
model for Hadoop cluster, named AROMA, that uses regres-
sion to categorize an application using previously recorded
performance profile. We discuss in Section VII that such an
approach is complementary to RUMIG and can be integrated
in cases when historical performance profiles of applications
are available.

IX. FUTURE WORK

We will explore the use of Machine Learning techniques
to classify users, and also estimate the resource usage for
applications based on the attributes submitted for the job. We
will also explore multiple migrations by a container in Mesos,
once Docker is updated to allow continuous monitoring of
migrated containers.

X. CONCLUSION

Our work, RUMIG, is the first one to present and success-
fully implement a design to migrate containers between nodes
of a Mesos cluster for the purpose of resource right-sizing.
This feature makes it possible for applications to effectively
use the existing and emerging academic cloud infrastructures.
RUMIG shows considerable improvements over the default
setup of Aurora-Mesos. Overall, the approach can provide a
gain of 65% in runtime (Arcus cluster), 51% in CPU utilization
(Chameleon cloud), and 27% in memory utilization (Jetstream
cloud). We quantified the overhead of migrating containers
within a Mesos cluster. Apart from the scientific applications
that generate a huge amount of data, wherein the data transfer
costs are dominant and unavoidable, our migration scheme in
RUMIG improves the overall utilization and performance. The
elastic design of RUMIG provides significant improvements
over the static, no-migration approach of RUMIG-base. The
runtime with RUMIG decreased by 28% (Chameleon Cloud),
the CPU utilization improved by 29% (Jetstream) and Memory
utilization improved by 8% (Chameleon Cloud). Workloads
often have repetitive behavior and do not need to be profiled
every time a job is submitted. RUMIG can be configured to



reuse profiling for previously estimated tasks. As the size of
the Little and Big clusters is elastic, RUMIG can dynamically
turn-off the estimation step, in case it is not required or feasible
for small allocations.

ACKNOWLEDGMENT

This research is partially supported by the National Science
Foundation under Grant No. OAC-1740263.

REFERENCES

[1] C. A. Stewart, D. C. Stanzione, J. Taylor, E. Skidmore, D. Y. Hancock,
M. Vaughn, J. Fischer, T. Cockerill, L. Liming, N. Merchant,
T. Miller, and J. M. Lowe, “Jetstream,” in Proceedings of
the XSEDE16 on Diversity, Big Data, and Science at Scale
- XSEDE16. ACM Press, 2016, pp. 1–8. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2949550.2949639

[2] J. Mambretti, J. Chen, and F. Yeh, “Next Generation Clouds, the
Chameleon Cloud Testbed, and Software Defined Networking (SDN),”
in 2015 International Conference on Cloud Computing Research and
Innovation (ICCCRI). IEEE, 2015, pp. 73–79. [Online]. Available:
http://ieeexplore.ieee.org/document/7421896/

[3] K. Kambatla, A. Pathak, and H. Pucha, “Towards optimizing hadoop
provisioning in the cloud,” in Proceedings of the 2009 conference on
Hot topics in cloud computing. USENIX Association, 2009, p. 22.

[4] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient
and QoS-Aware Cluster Management.” [Online]. Available:
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2541940.2541941

[5] V. K. Vavilapalli, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, E. Baldeschwieler, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, and H. Shah, “Apache
Hadoop YARN,” in Proceedings of the 4th annual Symposium on
Cloud Computing - SOCC ’13. ACM Press, 2013, pp. 1–16. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2523616.2523633

[6] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega,” in Proceedings of the 8th ACM European Conference on
Computer Systems - EuroSys ’13. ACM Press, 2013, p. 351. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2465351.2465386

[7] “Apache Aurora.” [Online]. Available: http://aurora.apache.org/
[8] “Marathon: A container orchestration platform for Mesos and DC/OS.”

[Online]. Available: https://mesosphere.github.io/marathon/
[9] “TORQUE Resource Manager.” [Online]. Available:

http://www.adaptivecomputing.com/products/open-source/torque/
[10] “Slurm Workload Manager.” [Online]. Available:

https://slurm.schedmd.com/
[11] L. T. Yang, X. Ma, and F. Mueller, “Cross-Platform Performance

Prediction of Parallel Applications Using Partial Execution,” Tech. Rep.,
2005. [Online]. Available: https://ieeexplore.ieee.org/document/1559992

[12] A. Wong, D. Rexachs, and E. Luque, “Parallel Application Signature
for Performance Analysis and Prediction,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 7, pp. 2009–2019, 7
2015. [Online]. Available: http://ieeexplore.ieee.org/document/6827943/

[13] S. Sodhi and J. Subhlok, “Performance Prediction with Skeletons,”
Tech. Rep., 2005. [Online]. Available: http://www.cs.uh.edu

[14] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large Cloud Platforms
*,” 2017. [Online]. Available: https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.

[15] Y. Cheng, Z. Chai, and A. Anwar, “Characterizing Co-located
Datacenter Workloads: An Alibaba Case Study,” 8 2018. [Online].
Available: http://arxiv.org/abs/1808.02919

[16] James Turnbull, The Docker Book: Containerization is the new
virtualization, 2014. [Online]. Available: https://www.dockerbook.com/

[17] Ken McDonell, “Performance Co-Pilot.” [Online]. Available:
http://pcp.io/

[18] “APACHE MESOS 2016 SURVEY REPORT HIGHLIGHTS,”
Tech. Rep. [Online]. Available: https://mesosphere.com/wp-
content/uploads/2016/11/apache-mesos-survey-2016-infographic.pdf

[19] J. G. Amar, “The Monte Carlo method in science and engineering,”
Computing in Science & Engineering, vol. 8, no. 2, pp. 9–19, 2006.
[Online]. Available: http://ieeexplore.ieee.org/document/1599369/

[20] C. Bienia and K. Li, “PARSEC 2.0: A New Bench-
mark Suite for Chip-Multiprocessors.” [Online]. Available:
http://parsec.cs.princeton.edu/publications/bienia09parsec-2.0.pdf

[21] ——, “The PARSEC Benchmark Suite Tutorial -PARSEC 2.0.” [Online].
Available: http://parsec.cs.princeton.edu/download/tutorial/2.0/parsec-
2.0-tutorial.pdf

[22] ——, BENCHMARKING MODERN MULTIPROCESSORS. Prince-
ton University New York, 2011. [Online]. Available:
http://parsec.cs.princeton.edu/publications/bienia11benchmarking.pdf

[23] “Kubernetes Vertical Pod Autoscaler.” [Online]. Avail-
able: https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-
autoscaler

[24] G. Rattihalli, P. Saha, M. Govindaraju, and D. Tiwari, “Two stage cluster
for resource optimization with Apache Mesos,” in MTAGS17: 10th Work-
shop on Many-Task Computing on Clouds, Grids, and Supercomputers,
Denver, USA, 2017.

[25] G. Rattihalli, “Exploring Potential for Resource Request Right-Sizing
via Estimation and Container Migration in Apache Mesos,” in 2018
IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion). IEEE, 12 2018, pp. 59–64. [Online].
Available: https://ieeexplore.ieee.org/document/8605758/

[26] P. Hoenisch, I. Weber, S. Schulte, L. Zhu, and A. Fekete, “Four-Fold
Auto-Scaling on a Contemporary Deployment Platform Using Docker
Containers.” Springer, Berlin, Heidelberg, 2015, pp. 316–323.

[27] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in
Cloud Computing: State of the Art and Research Challenges,” IEEE
Transactions on Services Computing, vol. 11, no. 2, pp. 430–447, 2018.
[Online]. Available: https://ieeexplore.ieee.org/document/7937885/

[28] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A discrete-
time feedback controller for containerized cloud applications,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering - FSE 2016. New York,
New York, USA: ACM Press, 2016, pp. 217–228. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2950290.2950328

[29] J. Hadley, Y. Elkhatib, G. Blair, and U. Roedig, “MultiBox:
Lightweight Containers for Vendor-Independent Multi-cloud Deploy-
ments.” Springer, Cham, 2015, pp. 79–90.

[30] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling
Using System-Generated Predictions Rather than User Runtime
Estimates,” IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 6, pp. 789–803, 2007. [Online]. Available:
http://ieeexplore.ieee.org/document/4180346/

[31] C. Bailey Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are User
Runtime Estimates Inherently Inaccurate?” Springer, Berlin, Heidel-
berg, 2005, pp. 253–263.

[32] E. R. Rodrigues, R. L. F. Cunha, M. A. S. Netto, and M. Spriggs,
“Helping HPC users specify job memory requirements via machine
learning,” Proceedings of the Third International Workshop on
HPC User Support Tools, pp. 6–13, 2016. [Online]. Available:
https://dl.acm.org/citation.cfm?id=3018836

[33] Y. Barve, S. Shekhar, A. Chhokra, S. Khare, A. Bhattacharjee,
and A. Gokhale, “FECBench: An Extensible Framework for
Pinpointing Sources of Performance Interference in the Cloud-
Edge Resource Spectrum,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 10 2018, pp. 331–333. [Online]. Available:
https://ieeexplore.ieee.org/document/8567679/

[34] Y. Barve, S. Shekhar, S. Khare, A. Bhattacharjee, and
A. Gokhale, “UPSARA: A Model-Driven Approach for Performance
Analysis of Cloud-Hosted Applications,” in 2018 IEEE/ACM
11th International Conference on Utility and Cloud Computing
(UCC). IEEE, 12 2018, pp. 1–10. [Online]. Available:
https://ieeexplore.ieee.org/document/8603147/

[35] A. Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda,
“A Model-Driven Approach to Automate the Deployment and
Management of Cloud Services,” in 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC
Companion). IEEE, 12 2018, pp. 109–114. [Online]. Available:
https://ieeexplore.ieee.org/document/8605766/

[36] P. Lama and X. Zhou, “AROMA,” in Proceedings of
the 9th international conference on Autonomic computing -
ICAC ’12. ACM Press, 2012, p. 63. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2371536.2371547


